The Joint Commission has approved the following revisions for prepublication. While revised requirements are published in the semiannual updates to the print manuals (as well as in the online E-dition®), certified organizations and paid subscribers can also view them in the monthly periodical The Joint Commission Perspectives®. To begin your subscription, call 800-746-6578 or visit http://www.jcrinc.com.

Standards Revisions Related to Life Safety Code Update

APPLICABLE TO AMBULATORY CARE CENTERS

Effective January 9, 2017

Environment of Care (EC) Chapter

EC.01.01.01

The organization plans activities to minimize risks in the environment of care.

Note: One or more persons can be assigned to manage risks associated with the management plans described in this standard.

Elements of Performance for EC.01.01.01

1. Leaders identify an individual(s) to manage risk, coordinate risk reduction activities in the physical environment, collect deficiency information, and disseminate summaries of actions and results. Note: Deficiencies include injuries, problems, or use errors.

2. Leaders identify an individual(s) to intervene whenever environmental conditions immediately threaten life or health or threaten to damage equipment or buildings.

3. The organization has a written plan for managing the following: The environmental safety of everyone who enters the organization’s facilities.

4. The organization has a written plan for managing the following: The security of everyone who enters the organization’s facilities.

5. The organization has a written plan for managing the following: Hazardous materials and waste.

Key: ⩓ indicates that documentation is required; ⟳ indicates an identified risk area
6. The organization has a written plan for managing the following: Fire safety.

7. The organization has a written plan for managing the following: Medical equipment.

8. The organization has a written plan for managing the following: Utility systems.

EC.02.01.01
The organization manages safety and security risks.

<table>
<thead>
<tr>
<th>Elements of Performance for EC.02.01.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The organization implements its process to identify safety and security risks associated with the environment of care that could affect patients, staff, and other people coming to the organization's facilities. Note: Risks are identified from internal sources such as ongoing monitoring of the environment, results of root cause analyses, results of proactive risk assessments of high-risk processes, and from credible external sources such as Sentinel Event Alerts.</td>
</tr>
<tr>
<td>3. The organization takes action to minimize identified safety and security risks in the physical environment.</td>
</tr>
<tr>
<td>6. The organization manages safety risks related to entering and exiting the organization.</td>
</tr>
<tr>
<td>8. The organization controls access to and from areas it identifies as security sensitive.</td>
</tr>
<tr>
<td>11. The organization responds to product notices and recalls. (See also MM.05.01.17, EPs 1–4)</td>
</tr>
<tr>
<td>14. The organization manages magnetic resonance imaging (MRI) safety risks associated with the following:</td>
</tr>
<tr>
<td>- Patients who may experience claustrophobia, anxiety, or emotional distress</td>
</tr>
<tr>
<td>- Patients who may require urgent or emergent medical care</td>
</tr>
<tr>
<td>- Patients with medical implants, devices, or imbedded metallic foreign objects (such as shrapnel)</td>
</tr>
<tr>
<td>- Ferromagnetic objects entering the MRI environment</td>
</tr>
<tr>
<td>- Acoustic noise</td>
</tr>
<tr>
<td>16. The organization manages magnetic resonance imaging (MRI) safety risks by doing the following:</td>
</tr>
<tr>
<td>- Restricting access of everyone not trained in MRI safety or screened by staff trained in MRI safety from the scanner room and the area that immediately precedes the entrance to the MRI scanner room.</td>
</tr>
<tr>
<td>- Making sure that these restricted areas are controlled by and under the direct supervision of staff trained in MRI safety.</td>
</tr>
<tr>
<td>- Posting signage at the entrance to the MRI scanner room that conveys that potentially dangerous magnetic fields are present in the room. Signage should also indicate that the magnet is always on except in cases where the MRI system, by its design, can have its magnetic field routinely turned on and off by the operator.</td>
</tr>
</tbody>
</table>
EC.02.01.03
The organization prohibits smoking.

Elements of Performance for EC.02.01.03

1. **Smoking is not permitted in the organization.**

 Note: The scope of this EP is concerned with all smoking types—tobacco, electronic, or other.

EC.02.02.01
The organization manages risks related to hazardous materials and waste.

Elements of Performance for EC.02.02.01

1. **The organization maintains a written, current inventory of hazardous materials and waste that it uses, stores, or generates.** The only materials that need to be included on the inventory are those whose handling, use, and storage are addressed by law and regulation. (See also IC.02.01.01, EP 6; MM.01.01.03, EP 3)

3. **The organization has written procedures, including the use of precautions and personal protective equipment, to follow in response to hazardous material and waste spills or exposures.**

4. **The organization implements its procedures in response to hazardous material and waste spills or exposures.** (See also IC.02.02.01, EP 2)

5. **The organization minimizes risks associated with selecting, handling, storing, transporting, using, and disposing of hazardous chemicals.**

6. **The organization minimizes risks associated with selecting, handling, storing, transporting, using, and disposing of radioactive materials.**

7. **The organization minimizes risks associated with the selection and use of hazardous energy sources.**

 Note: Hazardous energy is produced by both ionizing equipment (for example, radiation and x-ray equipment) and nonionizing equipment (for example, lasers and MRIs).

8. **The organization minimizes risks associated with disposing of hazardous medications.** (See also MM.01.01.03, EPs 1–3)

9. **The organization minimizes risks associated with selecting, handling, storing, transporting, using, and disposing of hazardous gases and vapors.**

 Note: Hazardous gases and vapors include, but are not limited to, ethylene oxide and nitrous oxide gases; vapors generated by glutaraldehyde; cauterizing equipment, such as lasers; waste anesthetic gas disposal (WAGD); and laboratory rooftop exhaust. (For full text, refer to NFPA 99-2012: 9.3.8; 9.3.9)
10. The organization monitors levels of hazardous gases and vapors to determine that they are in safe range.
 Note: Law and regulation determine the frequency of monitoring hazardous gases and vapors as well as acceptable ranges.

11. For managing hazardous materials and waste, the organization has the permits, licenses, manifests, and safety data sheets required by law and regulation.

12. The organization labels hazardous materials and waste. Labels identify the contents and hazard warnings. * (See also IC.02.01.01, EP 6)
 Footnote *: The Occupational Safety and Health Administration’s (OSHA) Bloodborne Pathogens and Hazard Communications Standards and the National Fire Protection Association (NFPA) provide details on labeling requirements.

14. For ambulatory surgical centers that elect to use The Joint Commission deemed status option: The ambulatory surgical center checks radiology staff, according to time frames it defines, for radiation exposure, using exposure meters or badge tests. The dates of the checks and amount of exposure are documented.

15. For ambulatory surgical centers that elect to use The Joint Commission deemed status option: The radiologic services, including ionizing radiology procedures, are free from hazards for patients and staff.

17. For organizations that provide computed tomography (CT), positron emission tomography (PET), or nuclear medicine (NM) services: The results of staff dosimetry monitoring are reviewed at least quarterly by the radiation safety officer, diagnostic medical physicist, or health physicist to assess whether staff radiation exposure levels are "as low as reasonably achievable" (ALARA) and below regulatory limits.
 Note 1: For the definition of ALARA, please refer to US Nuclear Regulatory Commission federal regulation 10 CFR 20.1003.
 Note 2: This element of performance does not apply to dental cone beam CT radiographic imaging studies performed for diagnosis of conditions affecting the maxillofacial region or to obtain guidance for the treatment of such conditions.

EC.02.03.01
The organization manages fire risks.

Elements of Performance for EC.02.03.01

1. The organization minimizes the potential for harm from fire, smoke, and other products of combustion.

4. The organization maintains free and unobstructed access to all exits.
 Note: This requirement applies to all buildings classified as business occupancy. The "Life Safety" (LS) chapter addresses the requirements for all other occupancy types.
9. The organization has a written fire response plan that describes the specific roles of staff and licensed independent practitioners during a fire, including when and how to sound fire alarms, how to contain smoke and fire, how to use a fire extinguisher, how to assist and relocate patients, and how to evacuate to areas of refuge.
Note 1: For additional information on the content of the fire response plan guidance, see NFPA 101, 2012 edition, 18/19: 7.1; 7.2.
Note 2: For ambulatory surgical centers and outpatient surgical departments that elect to use The Joint Commission deemed status option: A copy of the fire response plan is available to all supervisory personnel and is available in the telephone operator’s position or at a security center.

EC.02.03.03
The organization conducts fire drills.

Elements of Performance for EC.02.03.03

1. The organization conducts quarterly fire drills in each building defined as an ambulatory health care occupancy by the Life Safety Code. (See also LS.01.02.01, EP 11; LS.03.01.70, EP 6)
 Note 1: Evacuation of patients during drills is not required.
 Note 2: When drills are conducted between 9:00 P.M. and 6:00 A.M., the organization may use alternative methods to notify staff instead of activating audible alarms.
 Note 3: In leased or rented facilities, drills need be conducted only in areas of the building that the organization occupies.

2. The organization conducts fire drills every 12 months from the date of the last drill in each area that is defined as a business occupancy by the Life Safety Code and in which care, treatment, or services are provided, or quarterly for ambulatory surgical centers seeking accreditation for Medicare certification.
 Note 1: In leased or rented facilities, drills need be conducted only in areas of the building that the organization occupies.
 Note 2: In sites that are used on average 70 hours or less per month, the organization may choose either to review the fire response plan or to conduct a fire drill every 12 months. This note does not apply to ambulatory surgical centers that elect to use The Joint Commission deemed status option.

3. When quarterly fire drills are required, at least 50% are unannounced. Fire drills are held at unexpected times and under varying conditions. Fire drills include transmission of fire alarm signal and simulation of emergency fire conditions.
 Note 1: When drills are conducted between 9:00 P.M. and 6:00 A.M., the organization may use alternative methods to notify staff instead of activating audible alarms.
 Note 2: For additional guidance, see NFPA 101-2012: 18/19: 7.1.7; 7.1; 7.2; 7.3.

5. The organization critiques fire drills.
EC.02.03.05
The organization maintains fire safety equipment and fire safety building features.
Note: This standard does not require organizations to have the types of fire safety equipment and building features described below. However, if these types of equipment or features exist within the building, then the following maintenance, testing, and inspection requirements apply.

Elements of Performance for EC.02.03.05

1. At least quarterly, the organization tests supervisory signal devices on the inventory (except valve tamper switches). The results and completion dates are documented.
 Note 1: For additional guidance on performing tests, see NFPA 72-2010: Table 14.3.1.
 Note 2: Supervisory signals include the following: control valves; pressure supervisory; pressure tank, pressure supervisory for a dry pipe (both high and low conditions), steam pressure; water level supervisory signal initiating device; water temperature supervisory; and room temperature supervisory.

2. Every 6 months, the organization tests vane-type and pressure-type water flow devices and valve tamper switches on the inventory. The results and completion dates are documented.
 Note 1: For additional guidance on performing tests, see NFPA 72-2010: Table 14.4.5.
 Note 2: Mechanical water-flow devices (including, but not limited to, water motor gongs) should be tested quarterly. The results and completion dates are documented. (For full text, refer to NFPA 25-2011: Table 5.1.1.2)

3. Every 12 months, the organization tests duct detectors, heat detectors, manual fire alarm boxes, and smoke detectors on the inventory. The results and completion dates are documented.
 Note: For additional guidance on performing tests, see NFPA 72-2010: Table 14.4.5; 17.14.

4. Every 12 months, the organization tests visual and audible fire alarms, including speakers and door-releasing devices on the inventory. The results and completion dates are documented.
 Note: For additional guidance on performing tests, see NFPA 72-2010: Table 14.4.5.

5. Every 12 months the organization tests fire alarm equipment on the inventory for notifying off-site fire responders. The results and completion dates are documented.
 Note: For additional guidance on performing tests, see NFPA 72-2010: Table 14.4.5.

6. For automatic sprinkler systems: The organization tests electric motor–driven fire pumps monthly and diesel-engine-driven fire pumps weekly under no-flow conditions. The results and completion dates are documented.
 Note: For additional guidance on performing tests, see NFPA 25-2011: 8.3.1; 8.3.2.

7. For automatic sprinkler systems: Every six months, the organization tests water-storage tank high- and low-water level alarms. The results and completion dates are documented.
 Note: For additional guidance on performing tests, see NFPA 25-2011: 9.2.1; Table 9.1.1.2.
8. For automatic sprinkler systems: Every month during cold weather, the organization tests water-storage tank temperature alarms. The results and completion dates are documented.
 Note: For additional guidance on performing tests, see NFPA 25-2011: 9.2.4; Table 9.1.1.2.

9. For automatic sprinkler systems: Every 12 months, the organization tests main drains at system low point or at all system risers. The results and completion dates are documented.
 Note: For additional guidance on performing tests, see NFPA 25-2011: 13.2.5; 13.3.3.4; Table 13.1.1.2; Table 13.8.1.

10. For automatic sprinkler systems: Every quarter, the organization inspects all fire department water supply connections. The results and completion dates are documented.
 Note: For additional guidance on performing tests, see NFPA 25-2011: 13.7; Table 13.1.1.2.

11. For automatic sprinkler systems: Every 12 months, the organization tests fire pumps under flow. The results and completion dates are documented.
 Note: For additional guidance on performing tests, see NFPA 25-2011: 8.3.3.

12. Every five years, the organization conducts hydrostatic and water-flow tests for standpipe systems. The results and completion dates are documented.
 Note: For additional guidance on performing tests, see NFPA 25-2011: 6.3.1; 6.3.2; Table 6.1.1.2.

14. Every 12 months, the organization tests carbon dioxide and other gaseous automatic fire-extinguishing systems. The results and completion dates are documented.
 Note 1: Discharge of the fire-extinguishing systems is not required.
 Note 2: For full text, refer to NFPA 13-2010: 21.4.1.6(1).

15. At least monthly, the organization inspects portable fire extinguishers. The results and completion dates are documented.
 Note 1: There are many ways to document the inspections, such as using bar-coding equipment, using check marks on a tag, or using an inventory.
 Note 2: Inspections involve a visual check to determine correct type of and clear and unobstructed access to a fire extinguisher, in addition to a check for broken parts and full charge.
 Note 3: For additional guidance on inspection of fire extinguishers, see NFPA 10-2010: 7.2.2; 7.2.4.

16. Every 12 months, the organization performs maintenance on portable fire extinguishers, including recharging. Individuals performing annual maintenance on extinguishers are certified. The results and completion dates are documented.
 Note 1: There are many ways to document the maintenance, such as using bar-coding equipment, using check marks on a tag, or using an inventory.
 Note 2: For additional guidance on maintaining fire extinguishers, see NFPA 10-2010: 7.1.2; 7.2.2; 7.2.4; 7.3.1.
17. The organization conducts hydrostatic tests on standpipe occupant hoses five years after installation and every three years thereafter. The results and completion dates are documented.
Note: For additional guidance on hydrostatic testing, see NFPA 1962-2008 (Chapter 7), and NFPA 25-2011.

18. The organization operates fire and smoke dampers one year after installation and then at least every four years to verify that they fully close. The results and completion dates are documented.
Note: For additional guidance on performing tests, see NFPA 90A-2012: 5.4.8; NFPA 80-2010: 19.4; NFPA 105-2010: 6.5.

19. Every 12 months, the organization tests automatic smoke-detection shutdown devices for air-handling equipment. The results and completion dates are documented.
Note: For additional guidance on performing tests, see NFPA 90A-2010: 6.4.1.

20. Every 12 months, the organization tests sliding and rolling fire doors, smoke barrier sliding or rolling doors, and corridor walls and partitions for proper operation and full closure. The results and completion dates are documented.
Note: For additional guidance on performing tests, see NFPA 80-2010: 5.2.14.3; NFPA 105-2010: 5.2.1; 5.2.2.

25. The organization has written documentation of annual inspection and testing of door assemblies by individuals who can demonstrate knowledge and understanding of the operating components of the door being tested. Testing begins with a pre-test visual inspection; testing includes both sides of the opening.
Note: For additional guidance on testing of door assemblies, see NFPA 101-2012: 7.2.1.5.10.1; 7.2.1.5.11; NFPA 80-2010: 4.8.4; 5.2.1; 5.2.3; 5.2.4; 5.2.6; 5.2.7; 6.3.1.7; NFPA 105-2010: 5.2.1.

EC.02.04.01

The organization manages medical equipment risks.

Elements of Performance for EC.02.04.01

1. The organization has a systematic approach to selecting and acquiring medical equipment.

2. The organization maintains either a written inventory of all medical equipment or a written inventory of selected equipment categorized by physical risk associated with use (including all life-support equipment) and equipment incident history. The organization evaluates new types of equipment before initial use to determine whether they should be included in the inventory.

For ambulatory surgical centers and outpatient surgical departments that elect to use The Joint Commission deemed status option: The organization maintains a written inventory of all medical equipment.
3. The organization identifies the activities and frequencies for maintaining, inspecting, and testing for all medical equipment on the inventory. Various maintenance strategies may be used to ensure reliable performance (for example, predictive maintenance, reliability-centered maintenance, interval-based inspections, corrective maintenance, or metered maintenance). Defined intervals may be based on criteria such as manufacturers’ recommendations, risk levels, and current organization experience.

For ambulatory surgical centers and outpatient surgical departments that elect to use The Joint Commission deemed status option: The organization identifies the activities and frequencies for maintaining, inspecting, and testing for all medical equipment on the inventory. These activities and frequencies must follow manufacturers’ recommendations or other federal or state requirements.

5. The organization monitors and reports all incidents in which medical equipment is suspected in or attributed to the death, serious injury, or serious illness of any individual, as required by the Safe Medical Devices Act of 1990.

6. The organization has written procedures to follow when medical equipment fails, including using emergency clinical interventions and backup equipment.

10. The organization identifies quality control and maintenance activities to maintain the quality of the diagnostic computed tomography (CT), positron emission tomography (PET), magnetic resonance imaging (MRI), and nuclear medicine (NM) images produced. The organization identifies how often these activities should be conducted.

EC.02.04.03
The organization inspects, tests, and maintains medical equipment.

Elements of Performance for EC.02.04.03

1. Before initial use of medical equipment on the medical equipment inventory, the organization performs safety, operational, and functional checks.

2. The organization inspects, tests, and maintains all high-risk equipment. These activities are documented. Note: High-risk equipment includes life-support equipment.

3. The organization inspects, tests, and maintains non-high-risk equipment identified on the medical equipment inventory. These activities are documented.

4. The organization conducts performance testing of and maintains all sterilizers. These activities are documented. (See also IC.02.02.01, EP 2)

5. The organization performs equipment maintenance and chemical and biological testing of water used in hemodialysis. These activities are documented.
14. The organization meets all other HealthCare Facilities Code requirements; facilities code for electrical equipment in the patient care vicinity as related to NFPA 99-2012: Chapter 10.
 Note: For ambulatory surgical centers that elect to use The Joint Commission deemed status option: the organization meets the applicable provisions of the Life Safety Code Tentative Interim Amendment (TIA) 12-5.

17. The organization maintains the quality of the diagnostic computed tomography (CT), positron emission tomography (PET), magnetic resonance imaging (MRI), and nuclear medicine (NM) images produced.

18. For ambulatory surgical centers that elect to use The Joint Commission deemed status option: Emergency equipment is maintained by qualified staff.

19. For diagnostic computed tomography (CT) services: At least annually, a diagnostic medical physicist does the following:
 - Measures the radiation dose (in the form of volume computed tomography dose index [CTDiVol]) produced by each diagnostic CT imaging system for the following four CT protocols: adult brain, adult abdomen, pediatric brain, and pediatric abdomen. If one or more of these protocols is not used by the organization, other commonly used CT protocols may be substituted.
 - Verifies that the radiation dose (in the form of CTDiVol) produced and measured for each protocol tested is within 20 percent of the CTDiVol displayed on the CT console. The dates, results, and verifications of these measurements are documented.
 Note 1: This element of performance is only applicable for systems capable of calculating and displaying radiation doses.
 Note 2: This element of performance does not apply to dental cone beam CT radiographic imaging studies performed for diagnosis of conditions affecting the maxillofacial region or to obtain guidance for the treatment of such conditions.
 Note 3: Medical physicists are accountable for these activities. They may be assisted with the testing and evaluation of equipment performance by individuals who have the required training and skills, as determined by the physicist. (For more information, refer to HR.01.02.01, EP 1; HR.01.02.05, EP 20; HR.01.02.07, EPs 1 and 2; HR.01.06.01, EP 1; LD.03.06.01, EP 4.)
20. For diagnostic computed tomography (CT) services: At least annually, a diagnostic medical physicist conducts a performance evaluation of all CT imaging equipment. The evaluation results, along with recommendations for correcting any problems identified, are documented. The evaluation includes the use of phantoms to assess the following imaging metrics:
- Image uniformity
- Slice thickness accuracy
- Slice position accuracy (when prescribed from a scout image)
- Alignment light accuracy
- Table travel accuracy
- Radiation beam width
- High-contrast resolution
- Low-contrast resolution
- Geometric or distance accuracy
- CT number accuracy and uniformity
- Artifact evaluation

Note 1: This element of performance does not apply to dental cone beam CT radiographic imaging studies performed for diagnosis of conditions affecting the maxillofacial region or to obtain guidance for the treatment of such conditions.

Note 2: Medical physicists are accountable for these activities. They may be assisted with the testing and evaluation of equipment performance by individuals who have the required training and skills, as determined by the physicist. (For more information, refer to HR.01.02.01, EP 1; HR.01.02.05, EP 20; HR.01.02.07, EPs 1 and 2; HR.01.06.01, EP 1; LD.03.06.01, EP 4.)

21. At least annually, a diagnostic medical physicist or magnetic resonance imaging (MRI) scientist conducts a performance evaluation of all MRI imaging equipment. The evaluation results, along with recommendations for correcting any problems identified, are documented. The evaluation includes the use of phantoms to assess the following imaging metrics:
- Image uniformity for all radiofrequency (RF) coils used clinically
- Signal-to-noise ratio (SNR) for all coils used clinically
- Slice thickness accuracy
- Slice position accuracy
- Alignment light accuracy
- High-contrast resolution
- Low-contrast resolution (or contrast-to-noise ratio)
- Geometric or distance accuracy
- Magnetic field homogeneity
- Artifact evaluation

Note: Medical physicists or MRI scientists are accountable for these activities. They may be assisted with the testing and evaluation of equipment performance by individuals who have the required training and skills, as determined by the medical physicist or MRI scientist. (For more information, refer to HR.01.02.01, EP 1; HR.01.02.05, EP 20; HR.01.02.07, EPs 1 and 2; HR.01.06.01, EP 1; LD.03.06.01, EP 4.)
22. At least annually, a diagnostic medical physicist or nuclear medicine physicist conducts a performance evaluation of all nuclear medicine imaging equipment. The evaluation results, along with recommendations for correcting any problems identified, are documented. The evaluations are conducted for all of the image types produced clinically by each NM scanner (for example, planar and/or tomographic) and include the use of phantoms to assess the following imaging metrics:
- Image uniformity/system uniformity
- High-contrast resolution/system spatial resolution
- Sensitivity
- Energy resolution
- Count-rate performance
- Artifact evaluation
Note 1: The following test is recommended, but not required: Low-contrast resolution or detectability for non-planar acquisitions.
Note 2: The medical physicist or nuclear medicine physicist is accountable for these activities. He or she may be assisted with the testing and evaluation of equipment performance by individuals who have the required training and skills, as determined by the medical physicist or nuclear medicine physicist. (For more information, refer to HR.01.02.01, EP 1; HR.01.02.05, EP 20; HR.01.02.07, EPs 1 and 2; HR.01.06.01, EP 1; LD.03.06.01, EP 4.)

23. At least annually, a diagnostic medical physicist conducts a performance evaluation of all positron emission tomography (PET) imaging equipment. The evaluation results, along with recommendations for correcting any problems identified, are documented. The evaluations are conducted for all of the image types produced clinically by each PET scanner (for example, planar and/or tomographic) and include the use of phantoms to assess the following imaging metrics:
- Image uniformity/system uniformity
- High-contrast resolution/system spatial resolution
- Low-contrast resolution or detectability (not applicable for planar acquisitions)
- Artifact evaluation
Note 1: The following tests are recommended, but not required, for PET scanner testing: sensitivity, energy resolution, and count-rate performance.
Note 2: Medical physicists are accountable for these activities. They may be assisted with the testing and evaluation of equipment performance by individuals who have the required training and skills, as determined by the medical physicist. (For more information, refer to HR.01.02.01, EP 1; HR.01.02.05, EP 20; HR.01.02.07, EPs 1 and 2; HR.01.06.01, EP 1; LD.03.06.01, EP 4.)

24. For computed tomography (CT), positron emission tomography (PET), nuclear medicine (NM), or magnetic resonance imaging (MRI) services: The annual performance evaluation conducted by the diagnostic medical physicist or MRI scientist (for MRI only) includes testing of image acquisition display monitors for maximum and minimum luminance, luminance uniformity, resolution, and spatial accuracy.
Note 1: This element of performance does not apply to dental cone beam CT radiographic imaging studies performed for diagnosis of conditions affecting the maxillofacial region or to obtain guidance for the treatment of such conditions.
Note 2: Medical physicists or MRI scientists are accountable for these activities. They may be assisted with the testing and evaluation of equipment performance by individuals who have the required training and skills, as determined by the physicist or MRI scientist. (For more information, refer to HR.01.02.01, EP 1; HR.01.02.05, EP 20; HR.01.02.07, EPs 1 and 2; HR.01.06.01, EP 1; LD.03.06.01, EP 4.)
EC.02.05.01
The organization manages risks associated with its utility systems.

Elements of Performance for EC.02.05.01

3. The organization identifies the activities and frequencies for maintaining, inspecting, and testing for all operating components of utility systems. Various maintenance strategies may be used to ensure reliable performance (for example, predictive maintenance, reliability-centered maintenance, interval-based inspections, corrective maintenance, or metered maintenance). Defined intervals may be based on criteria such as manufacturers’ recommendations, risk levels, and current organization experience.

For ambulatory surgical centers and outpatient surgical departments that elect to use The Joint Commission deemed status option: The organization identifies the activities and frequencies for maintaining, inspecting, and testing for all operating components of utility systems. These activities and frequencies must follow manufacturers’ recommendations or other federal or state requirements.

4. For ambulatory surgical centers and outpatient surgical departments that elect to use The Joint Commission deemed status option: The organization provides ventilation, temperature, and humidity levels in accordance with the levels established in the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) standards followed during initial construction or subsequent major renovations, alterations, or modernizations of the facility.

6. In areas designed to control airborne contaminants (such as biological agents, gases, fumes, dust), the ventilation system provides appropriate pressure relationships, air-exchange rates, filtration efficiencies, relative humidity, and temperature.

Note: Areas designed for control of airborne contaminants include spaces such as all classes of operating rooms, special procedure rooms that require a sterile field, caesarean delivery rooms, rooms for patients diagnosed with or suspected of having airborne communicable diseases (for example, airborne infection isolation rooms, rooms for patients with pulmonary or laryngeal tuberculosis, bronchoscopy treatment rooms), patients in “protective environment” rooms (for example, rooms for patients receiving bone marrow transplants), laboratories, pharmacies, sterile supply/processing rooms, and other sterile spaces. For further information, refer to Guidelines for Design and Construction of Health Care Facilities, 2014 edition, administered by the Facility Guidelines Institute and published by the American Society for Healthcare Engineering (ASHE).

7. The organization maps the distribution of its utility systems.

8. The organization labels utility system controls to facilitate partial or complete emergency shutdowns.

Note 1: Examples of utility system controls that should be labeled are utility source valves, utility system main switches and valves, and individual circuits in an electrical distribution panel.

Note 2: For example, the fire alarm system’s circuit is clearly labeled as Fire Alarm Circuit; the disconnect method (that is, the circuit breaker) is marked in red; and access is restricted to authorized personnel. Information regarding the dedicated branch circuit for the fire alarm panel is located in the control unit. For additional guidance, see NFPA 101-2012: 20/21.3.4.1; 9.6.1.3; NFPA 72-2010: 10.5.5.2.
9. The organization has written procedures for responding to utility system disruptions.

10. The organization's procedures address shutting off the malfunctioning system and notifying staff in affected areas.

11. The organization's procedures address performing emergency clinical interventions during utility system disruptions.

13. The organization responds to utility system disruptions as described in its procedures.

16. In non–critical care areas, the ventilation system provides required pressure relationships, temperature, and humidity.

 Note: Examples of non–critical care areas are general care nursing units; clean and soiled utility rooms in acute care areas; laboratories, pharmacies, diagnostic and treatment areas, food preparation areas, and other support departments.

18. Medical gas storage rooms and transfer and manifold rooms comply with NFPA 99-2012: 9.3.7.

19. The emergency power supply system’s equipment and environment are maintained per manufacturers’ recommendations, including ambient temperature of at least 40°F; ventilation supply and exhaust; and water jacket temperature (when required).

 (For full text, refer to NFPA 99-2012: 9.3.10)

EC.02.05.03
The organization has a reliable emergency electrical power source.

Elements of Performance for EC.02.05.03

1. For ambulatory surgical centers and outpatient surgical departments that elect to use The Joint Commission deemed status option: For facilities that were constructed, or had a change in occupancy type, or have undergone an electrical system upgrade since 1983, the organization has a Type 1 or Type 3 essential electrical system in accordance with NFPA 99, 2012 edition. This essential electrical system must be divided into three branches, including the life safety branch, critical branch, and equipment branch. Both the life safety branch and the critical branch are kept independent of all other wiring and equipment, and they transfer within 10 seconds of electrical interruption. Each branch has at least one automatic transfer switch. For additional guidance, see NFPA 99-2012: 6.4.2.2; 6.4.2.2.6.

2. The organization provides emergency power within 10 seconds for the following: Alarm systems, as required by the Life Safety Code.

 Note: For guidance in establishing a reliable emergency power system (that is, an essential electrical distribution system), see NFPA 99-2012: 6.4.1.1; 6.4.2.2.3.3; 6.4.4.1.1; NFPA 110-2010: 4.1; Table 4.1(a).

3. The organization provides emergency power within 10 seconds for the following: Exit route and exit sign illumination, as required by the Life Safety Code.

 Note: For guidance in establishing a reliable emergency power system (that is, an essential electrical distribution system), see NFPA 99-2012: 6.4.1.1.6; 6.4.2.2.3.3; NFPA 110-2010: 4.1; Table 4.1(a).
4. The organization provides emergency power within 10 seconds for the following:
 Emergency communication systems, as required by the Life Safety Code.
 Note: For guidance in establishing a reliable emergency power system (that is, an essential electrical distribution system), see NFPA 99-2012: 6.4.1.1; 6.4.2.2.3.3; NFPA 110-2010: 4.1; Table 4.1(a).

5. The organization provides emergency power within 10 seconds for the following:
 Equipment that could cause patient harm when it fails, including life-support systems; blood, bone, and tissue storage systems; medical air compressors; and medical and surgical vacuum systems.
 Note: For ambulatory surgical centers and outpatient surgical departments that elect to use The Joint Commission deemed status option: See NFPA 99-2012: 6.4.1.1; 6.4.2.2.3.3; NFPA 110-2010: 4.1; Table 4.1(a) for guidance in establishing a reliable emergency power system (that is, an essential electrical distribution system).

6. The organization provides emergency power within 10 seconds for the following:
 Areas in which loss of power could result in patient harm, including operating rooms, recovery rooms, and urgent care areas.
 Note: For guidance in establishing a reliable emergency power system (that is, an essential electrical distribution system), see NFPA 99-2012: 6.4.1.1; 6.4.2.2.3.3; NFPA 110-2010: 4.1; Table 4.1(a).

10. The organization provides emergency power within 10 seconds for the following:
 Emergency lighting at emergency generator locations. The organization’s emergency power system (EPS) has a remote manual stop station (with identifying label) to prevent inadvertent or unintentional operation. A remote annunciator (powered by storage battery) is located outside the EPS location.
 Note: For guidance in establishing a reliable emergency power system (that is, an essential electrical distribution system), refer to NFPA 99-2012: 6.4.1.1.6; 6.4.1.1.17; 6.4.2.2.3.3; NFPA 110-2010: 5.6.5.6; 7.3.1.

EC.02.05.05
The organization inspects, tests, and maintains utility systems.
Note: At times, maintenance is performed by an external service. In these cases, organizations are not required to possess maintenance documentation but must have access to such documentation during survey and as needed.

Elements of Performance for EC.02.05.05

1. When performing repairs or maintenance activities, the organization has a process to manage risks associated with air-quality requirements; infection control; utility requirements; noise, odor, dust, vibration; and other hazards that affect care, treatment, or services for patients, staff, and visitors.

2. The organization tests utility system components before initial use. The completion date and the results of the tests are documented.

3. The organization inspects, tests, and maintains the following: Utility systems. The completion date and the results of the activities are documented.
7. The organization meets all other HealthCare Facilities Code requirements for electrical distribution, HVAC, as related to NFPA 99-2012: Chapters 6 and 9. Note: For ambulatory surgical centers that elect to use The Joint Commission deemed status option: the organization meets the applicable provisions of the Life Safety Code Tentative Interim Amendments (TIAs) 12-2 and 12-3.

EC.02.05.07

The organization inspects, tests, and maintains emergency power systems.
Note: This standard does not require organizations to have the types of emergency power equipment discussed below. However, if these types of equipment exist within the building, then the following maintenance, testing, and inspection requirements apply.

Elements of Performance for EC.02.05.07

1. At least monthly, the organization performs a functional test of battery-powered lights on the inventory required for egress for a minimum duration of 30 seconds and a visual inspection of EXIT signs. The test results and completion dates are documented.
 Note: For additional guidance, see NFPA 101-2012: 7.9.3; 7.10.9.

2. Every 12 months, the organization either performs a functional test of battery-powered lights on the inventory required for egress for a duration of 1 1/2 hours, or the organization replaces all batteries every 12 months and, during replacement, performs a random test of 10% of all batteries for 1 1/2 hours. The completion date and results of the tests are documented.
 For ambulatory surgical centers and outpatient surgery departments that elect to use The Joint Commission deemed status option: Every 12 months, the organization performs a functional test of battery-powered lights on the inventory required for egress for a duration of 1 1/2 hours. The completion date and results of the tests are documented.

3. The organization performs a functional test of Level 1 stored emergency power supply systems (SEPSS) on a monthly basis and performs a test of Level 2 SEPSS on a quarterly basis. Test duration is for five minutes or as specified for its class (whichever is less). The organization performs an annual test at full load for 60% of the full duration of its class. The test results and completion dates are documented.
 Note 1: Non–SEPSS battery backup emergency power systems that the organization has determined to be critical for operations during a power failure (for example, laboratory equipment or electronic clinical records) should be properly tested and maintained in accordance with manufacturers’ recommendations.
 Note 2: Level 1 SEPSS are intended to automatically supply illumination or power to critical areas and equipment essential for safety to human life. Included are systems that supply emergency power for such functions as illumination for safe exiting, ventilation where it is essential to maintain life, fire detection and alarm systems, public safety communications systems, and processes where the current interruption would produce serious life safety or health hazards to patients, the public, or staff.
 Note 3: Class defines the minimum time for which the SEPSS is designed to operate at its rated load without being recharged.
 For additional guidance, see NFPA 111-2010: 8.4.
4. At least weekly, the organization inspects the emergency power supply system (EPSS), including all associated components and batteries. The results and completion dates of weekly inspections are documented.
 Note: For additional guidance, see NFPA 110-2010: 8.3.1; 8.3.3; 8.3.4; 8.4.1.

5. At least monthly, the organization tests each emergency generator under load for at least 30 continuous minutes. The cool-down period is not part of the 30 continuous minutes. The test results and completion dates are documented.

6. The monthly tests for diesel-powered emergency generators are conducted with a dynamic load that is at least 30% of the nameplate rating of the generator or meets the manufacturer’s recommended prime movers’ exhaust gas temperature. If the organization does not meet either the 30% of nameplate rating or the recommended exhaust gas temperature during any test in EC.02.05.07, EP 5, then it must test the emergency generator once every 12 months using supplemental (dynamic or static) loads of 50% of nameplate rating for 30 minutes, followed by 75% of nameplate rating for 60 minutes, for a total of 1 ½ continuous hours.
 Note: Tests for non-diesel-powered generators need only be conducted with available load.

7. At least monthly, the organization tests all automatic transfer switches on the inventory. The test results and completion dates are documented.

8. At least annually, the organization tests the fuel quality to ASTM standards. The test results and completion dates are documented.
 Note: For additional guidance, see NFPA 110-2010: 8.3.8.

9. At least once every 36 months, organizations with a generator providing emergency power for the services listed in EC.02.05.03, EP 5 and 6, test each emergency generator for a minimum of 4 continuous hours. The test results and completion dates are documented.
 Note: For additional guidance, see NFPA 110-2010, Chapter 8.

10. The 36-month diesel-powered emergency generator test uses a dynamic or static load that is at least 30% of the nameplate rating of the generator or meets the manufacturer’s recommended prime movers’ exhaust gas temperature.
 Note: Tests for non-diesel-powered generators need only be conducted with available load.

11. If a required emergency power system test fails, the organization implements measures to protect patients, visitors, and staff until necessary repairs or corrections are completed.

12. If a required emergency power system test fails, the organization performs a retest after making the necessary repairs or corrections.
EC.02.05.09
The organization inspects, tests, and maintains medical gas and vacuum systems.
Note 1: This standard does not require organizations to have the medical gas and vacuum systems discussed below. However, if an organization has these types of systems, then the following inspection, testing, and maintenance requirements apply.
Note 2: Piped medical gas systems include oxygen, nitrous oxide, medical air, carbon dioxide, helium, nitrogen, instrument air and mixtures thereof. Piped vacuum systems include both medical-surgical vacuum and waste anesthetic gas disposal (WAGD) systems.

Elements of Performance for EC.02.05.09

1. In time frames defined by the organization, the organization inspects, tests, and maintains critical components of piped medical gas and vacuum systems, including the source, distribution, inlets/outlets, and alarms that protect the piped medical gas systems. These activities and results are documented.

2. When the organization has bulk oxygen systems above ground, they are in a locked enclosure (such as a fence) at least 10 feet from vehicles and sidewalks. There is permanent signage stating “OXYGEN – NO SMOKING – NO OPEN FLAMES.”
 Note: For additional guidance, refer to NFPA 99-2012: 5.1.3.5.12.

3. The organization’s emergency oxygen supply connection is installed in a manner that allows a temporary auxiliary source to connect to it.
 Note: For additional guidance, refer to NFPA 99-2012: 5.1.3.5.13.

4. The organization tests piped medical gas and vacuum systems for purity, correct gas, and proper pressure when these systems are installed, modified, or repaired. The test results and completion dates are documented.

5. The organization makes main supply valves and area shutoff valves for piped medical gas and vacuum systems accessible and clearly identifies what the valves control.

6. The organization implements a policy on all cylinders within the organization that includes the following:
 - Proper handling and transporting (for example, in carts, attached to equipment, on racks) to ensure safety
 - Physically segregating full and empty cylinders from each other in order to assist staff in selecting the proper cylinder
 - Labeling empty cylinders
 - Prohibiting transfilling in any compartment with patient care rooms
 Note: For additional guidance, see NFPA 99-2012: 11.5.2.3; 11.6.2; 11.6.2.3; 11.6.5; 11.6.5.2; 11.6.5.3; 11.7.3.2.

7. The organization meets all other HealthCare Facilities Code requirements, gas and vacuum systems, and gas equipment, as related to NFPA 99-2012: Chapters 5 and 11.
 Note: For ambulatory surgical centers that elect to use The Joint Commission deemed status option: the organization meets the applicable provisions of the Life Safety Code Tentative Interim Amendments (TIAs) 12-4 and 12-6.
EC.02.06.01
The organization establishes and maintains a safe, functional environment.

<table>
<thead>
<tr>
<th>Elements of Performance for EC.02.06.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Interior spaces meet the needs of the patient population and are safe and suitable to the care, treatment, or services provided.</td>
</tr>
<tr>
<td>7. For ambulatory surgical centers and outpatient surgical departments that elect to use The Joint Commission deemed status option: The organization provides separate waiting and postanesthesia recovery areas.</td>
</tr>
<tr>
<td>11. Lighting is suitable for care, treatment, or services.</td>
</tr>
<tr>
<td>20. Areas used by patients are clean.</td>
</tr>
<tr>
<td>23. The organization provides emergency access to all locked and occupied spaces.</td>
</tr>
</tbody>
</table>

EC.02.06.05
The organization manages its space during demolition, renovation, or new construction.
Note: These elements of performance are applicable to all occupancy types.

<table>
<thead>
<tr>
<th>Elements of Performance for EC.02.06.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. When planning for new, altered, or renovated space, the organization uses one of the following design criteria:</td>
</tr>
<tr>
<td>- State rules and regulations</td>
</tr>
<tr>
<td>- Guidelines for Design and Construction of Health Care Facilities, 2014 edition, administered by the Facility Guidelines Institute and published by the American Society for Healthcare Engineering (ASHE) When the above rules, regulations, and guidelines do not meet specific design needs, use other reputable standards and guidelines that provide equivalent design criteria.</td>
</tr>
</tbody>
</table>
| 2. When planning for demolition, construction, renovation, or general maintenance, the organization conducts a preconstruction risk assessment for air quality requirements, infection control, utility requirements, noise, vibration, and other hazards that affect care, treatment, and services.
Note: See LS.01.02.01 for information on fire safety procedures to implement during construction or renovation. |
| 3. The organization takes action based on its assessment to minimize risks during demolition, construction, or renovation. |
4. For computed tomography (CT), positron emission tomography (PET), or nuclear medicine (NM) services: Prior to installation of new imaging equipment, replacement of existing imaging equipment, or modification to rooms where ionizing radiation will be emitted or radioactive materials will be stored (such as scan rooms or hot labs), a medical physicist or health physicist conducts a structural shielding design assessment to specify required radiation shielding.

Note: This element of performance does not apply to dental cone beam CT radiographic imaging studies performed for diagnosis of conditions affecting the maxillofacial region or to obtain guidance for the treatment of such conditions.

Footnote *: For additional guidance on shielding designs and radiation protection surveys, see National Council on Radiation Protection and Measurements Report No. 147 (NCRP-147).

6. For computed tomography (CT), positron emission tomography (PET), or nuclear medicine (NM) services: After installation of imaging equipment or construction in rooms where ionizing radiation will be emitted or radioactive materials will be stored, a medical physicist or health physicist conducts a radiation protection survey to verify the adequacy of installed shielding. * This survey is conducted prior to clinical use of the room.

Note: This element of performance does not apply to dental cone beam CT radiographic imaging studies performed for diagnosis of conditions affecting the maxillofacial region or to obtain guidance for the treatment of such conditions.

Footnote *: For additional guidance on shielding designs and radiation protection surveys, see National Council on Radiation Protection and Measurements Report No. 147 (NCRP-147).

EC.03.01.01

Staff and licensed independent practitioners are familiar with their roles and responsibilities relative to the environment of care.

Elements of Performance for EC.03.01.01

1. Staff and licensed independent practitioners can describe or demonstrate methods for eliminating and minimizing physical risks in the environment of care. (See also HR.01.04.01, EP 1)

2. Staff and licensed independent practitioners can describe or demonstrate actions to take in the event of an environment of care incident. (See also HR.01.04.01, EP 1)

3. Staff and licensed independent practitioners can describe or demonstrate how to report environment of care risks. (See also HR.01.04.01, EP 1)
EC.04.01.01
The organization collects information to monitor conditions in the environment.

Elements of Performance for EC.04.01.01

1. The organization establishes a process(es) for continually monitoring, internally reporting, and investigating the following:
 - Problems and incidents related to risks addressed in the environment of care management plans
 - Injuries to patients or others within the organization’s facilities
 - Occupational illnesses and staff injuries
 - Incidents of damage to its property or the property of others

 Note 1: All the incidents and issues listed above may be reported to staff in quality assessment, improvement, or other functions. A summary of such incidents may also be shared with the person designated to coordinate safety management activities.

 Note 2: Review of incident reports often requires that legal processes be followed to preserve confidentiality. Opportunities to improve care, treatment, or services, or to prevent similar incidents, are not lost as a result of following the legal process.

2. Based on its process(es), the organization reports and investigates the following:
 Problems and incidents related to each of the environment of care management plans.

3. Based on its process(es), the organization reports and investigates the following:
 Injuries to patients or others within the organization’s facilities.

4. Based on its process(es), the organization reports and investigates the following:
 Occupational illnesses and staff injuries.

5. Based on its process(es), the organization reports and investigates the following:
 Incidents of damage to its property or the property of others.

14. The organization monitors environmental deficiencies, hazards, and unsafe practices.

15. Every 12 months, the organization evaluates each environment of care management plan, including a review of the plan’s objectives, scope, performance, and effectiveness.

EC.04.01.03
The organization analyzes identified environment of care issues.

Elements of Performance for EC.04.01.03

1. Representatives from clinical, administrative, and support services participate in the analysis of environment of care data.

2. The organization uses the results of data analysis to identify opportunities to resolve environmental safety issues.
EC.04.01.05
The organization improves its environment of care.

Elements of Performance for EC.04.01.05

1. The organization takes action on the identified opportunities to resolve environmental safety issues.

2. The organization evaluates changes to determine if they resolved environmental safety issues.

Life Safety (LS) Chapter

LS.01.01.01
The organization designs and manages the physical environment to comply with the Life Safety Code. Note 1: This standard applies to sites of care where four or more patients at the same time are provided either anesthesia or outpatient services that render patients incapable of saving themselves in the event of an emergency in the organization. Note 2: This standard applies to all ambulatory surgical centers and outpatient surgical departments seeking accreditation for Medicare certification purposes, regardless of the number of patients rendered incapable.

Elements of Performance for LS.01.01.01

1. The organization assigns an individual(s) to assess compliance with the Life Safety Code and manage the Statement of Conditions (SOC) when addressing survey-related deficiencies.

2. In time frames defined by the organization, the organization performs a building assessment to determine compliance with the Life Safety chapter.

3. The organization maintains current and accurate drawings denoting features of fire safety and related square footage. Fire safety features include the following:
 - Areas of the building that are fully sprinklered (if the building is partially sprinklered)
 - Locations of all hazardous storage areas
 - Locations of all fire-rated barriers
 - Locations of all smoke-rated barriers
 - Sleeping and non-sleeping suite boundaries, including the size of the identified suites
 - Locations of designated smoke compartments
 - Locations of chutes and shafts
 - Any approved equivalencies or waivers
4. When the organization plans to resolve a deficiency through a Survey-Related Plan for Improvement (SPFI), the organization meets the 60-day time frame.
 Note 1: If the corrective action will exceed the 60-day time frame, the organization must request a time-limited waiver within 30 days from the end of survey.
 Note 2: If there are alternative systems, methods, or devices considered equivalent, the organization may submit an equivalency request using its Statement of Conditions (SOC).
 Note 3: For ambulatory surgical centers that elect to use The Joint Commission deemed status option: if there are existing alternative systems, methods, or devices, the organization may submit a waiver request using their Statement of Conditions (SOC).
 Note 4: For additional guidance on equivalencies, see NFPA 2012: 101:1.4.3.

6. The organization does not remove or minimize an existing life safety feature when such feature is a requirement for new construction. Existing life safety features, if not required by the Life Safety Code, can be either maintained or removed. (For full text, refer to NFPA 101-2012: 4.6.12.2; 4.6.12.3)

LS.01.02.01

The organization protects occupants during periods when the Life Safety Code is not met or during periods of construction.

Note 1: This standard applies to sites of care where four or more patients at the same time are provided either anesthesia or outpatient services that render patients incapable of saving themselves in the event of an emergency in the organization.

Note 2: This standard applies to all ambulatory surgical centers and outpatient surgical departments seeking accreditation for Medicare certification purposes, regardless of the number of patients rendered incapable.

Elements of Performance for LS.01.02.01

2. When the organization identifies Life Safety Code deficiencies that cannot be immediately corrected or during periods of construction, the organization evacuates the building or notifies the fire department (or other emergency response group) and initiates a fire watch when a fire alarm system is out of service more than 4 out of 24 hours or a sprinkler system is out of service more than 10 hours in a 24-hour period in an occupied building. Notification and fire watch times are documented. (For full text, refer to NFPA 101-2012: 9.6.1.6; 9.7.6; NFPA 25-2011: 15.5.2)

3. When the organization identifies Life Safety Code deficiencies that cannot be immediately corrected or during periods of construction, the organization does the following: Posts signage identifying the location of alternative exits to everyone affected.

4. When the organization identifies Life Safety Code deficiencies that cannot be immediately corrected or during periods of construction, the organization does the following: Inspects exits in affected areas on a daily basis. The organization determines when these inspections are needed.

5. When the organization identifies Life Safety Code deficiencies that cannot be immediately corrected or during periods of construction, the organization does the following: Provides temporary but equivalent fire alarm and detection systems for use when a fire system is impaired. The organization determines when these systems are needed.
6. When the organization identifies Life Safety Code deficiencies that cannot be immediately corrected or during periods of construction, the organization does the following: Provides additional firefighting equipment. The organization determines when to provide this equipment.

7. When the organization identifies Life Safety Code deficiencies that cannot be immediately corrected or during periods of construction, the organization does the following: Uses temporary construction partitions that are smoke-tight, or made of noncombustible or limited-combustible material that will not contribute to the development or spread of fire. The organization determines when to use these partitions.

8. When the organization identifies Life Safety Code deficiencies that cannot be immediately corrected or during periods of construction, the organization does the following: Increases surveillance of buildings, grounds, and equipment, giving special attention to construction areas and storage, excavation, and field offices. The organization determines when to increase surveillance.

9. When the organization identifies Life Safety Code deficiencies that cannot be immediately corrected or during periods of construction, the organization does the following: Enforces storage, housekeeping, and debris-removal practices that reduce the building’s flammable and combustible fire load to the lowest feasible level. The organization determines when these practices are needed.

10. When the organization identifies Life Safety Code deficiencies that cannot be immediately corrected or during periods of construction, the organization does the following: Provides additional training to those who work in the organization on the use of firefighting equipment. The organization determines when to provide additional training.

11. When the organization identifies Life Safety Code deficiencies that cannot be immediately corrected or during periods of construction, the organization does the following: Conducts one additional fire drill per quarter. The organization determines when these additional fire drills are needed. (See also EC.02.03.03, EP 1)

12. When the organization identifies Life Safety Code deficiencies that cannot be immediately corrected or during periods of construction, the organization does the following: Inspects and tests temporary systems monthly. The completion date of the tests is documented. The organization determines when these inspections and tests are needed.

13. The organization conducts education to promote awareness of building deficiencies, construction hazards, and temporary measures implemented to maintain fire safety. The organization determines when this education is needed.
14. The organization trains those who work in the organization to compensate for impaired structural or compartmental fire safety features. The organization determines when this training is needed.

Note: Compartmentalization is the concept of using various building components (for example, fire-rated walls and doors, smoke barriers, fire-rated floor slabs) to prevent the spread of fire and the products of combustion so as to provide a safe means of egress to an approved exit. The presence of these features varies, depending on the building occupancy classification.

LS.03.01.10

Building and fire protection features are designed and maintained to minimize the effects of fire, smoke, and heat.

Note 1: This standard applies to sites of care where four or more patients at the same time are provided either anesthesia or outpatient services that render patients incapable of saving themselves in an emergency in the organization.

Note 2: This standard applies to all ambulatory surgical centers seeking accreditation for Medicare certification purposes, regardless of the number of patients rendered incapable.

Note 3: In leased facilities, the elements of performance of this standard apply only to the space in which the accredited organization is located; all exits from the space to the outside at grade level; and any Life Safety Code building systems that support the space (for example, fire alarm system, automatic sprinkler system).

Elements of Performance for LS.03.01.10

1. Buildings meet requirements for height and construction type in accordance with NFPA 101-2012: 20/21.1.6.2; 1.6.3.

2. Ambulatory occupancies located in multi-occupancy buildings are separated from health care occupancies by two-hour fire-rated construction and from business occupancies by one-hour fire-rated walls. (For full text, refer to NFPA 101-2012: 20/21.1.3; 20/21.1.4; 20/21.3.7.1)

3. Fire barriers are continuous from outside wall to outside wall or from one fire barrier to another, or a combination thereof, including continuity through all concealed spaces, such as those found above a ceiling, including interstitial spaces. For those fire barriers terminating at the bottom side of an interstitial space, the construction assembly forming the bottom of the interstitial space must have a fire resistance rating not less than that of the fire barrier. (For full text, refer to NFPA 101-2012: 8.3.1.2)

4. The fire protection rating for opening protectives in fire barriers, fire-rated smoke barriers, and fire-rated smoke partitions is as follows:
 - Three hours in three-hour barriers and partitions
 - Ninety minutes in two-hour barriers and partitions
 - Forty-five minutes in one-hour barriers and partitions
 - Twenty minutes in ½-hour barriers and partitions

Labels on fire door assemblies must be maintained in legible condition. (For full text, refer to NFPA 101-2012: 8.3.4.2; Table 8.3.4.2; 8.3.3.2.3; NFPA 80-2010: 5.2.13.3)
Doors within walls and floors that are required to be fire rated have functioning hardware, including positive latching devices and self-closing or automatic-closing devices. Gaps between meeting edges of door pairs are no more than 1/8-inch wide, and undercuts are no larger than 3/4 of an inch. Blocking or wedging open fire-rated doors is prohibited. Doors required to be fire rated in the walls do not have unapproved protective plates greater than 16 inches from the bottom of the door. (For full text, refer to NFPA 101-2012: 8.3.3.1; NFPA 80-2010: 4.8.4.1; 5.2.13.3; 6.3.1.7; 6.4.5)

5. Doors requiring a minimum fire rating of 3/4 of an hour are free of coverings, decorations, or other objects applied to the door face. Informational signs, which are applied with adhesive only, are allowed provided that the informational signage does not exceed 5% of the door face area. (For full text, refer to NFPA 80-2010: 4.1.4; 4.1.4.2.1)

6. Ducts penetrating the walls and floors with a fire-resistance rating of less than three hours are protected by dampers that are fire rated for 1 1/2 hours; penetrations of three hours or greater are protected by fire dampers that are fire rated for three hours. (For full text, refer to NFPA 101-2012: 8.3.5.7; 9.2.1; NFPA 90A-2012: 5.4)

7. The space around pipes, conduits, bus ducts, cables, wires, air ducts, or pneumatic tubes penetrating the walls or floors are protected with an approved fire-rated material. Note: Non-approved polyurethane expanding foam is not an accepted fire-rated material for this purpose. (For full text, refer to NFPA 101-2012: 8.3.5)

LS.03.01.20
The organization maintains the integrity of the means of egress.
Note 1: This standard applies to sites of care where four or more patients at the same time are provided either anesthesia or outpatient services that render patients incapable of saving themselves in an emergency in the organization.
Note 2: This standard applies to all ambulatory surgical centers seeking accreditation for Medicare certification purposes, regardless of the number of patients rendered incapable.
Note 3: In leased facilities, the elements of performance of this standard apply only to the space in which the accredited organization is located; all exits from the space to the outside at grade level; and any Life Safety Code building systems that support the space (for example, fire alarm system, automatic sprinkler system).

Any door required to be self-closing, including those in an exit stair enclosure, may be held open provided there is an automatic release device that closes the door in response to the manual fire alarm system, loss of power, and smoke detectors. (For full text, refer to NFPA 101-2012: 20/21.2.2.4; 20/21.2.2.5; 7.2.1.8.2)

Exits discharge to the outside at grade level or through an approved exit passageway that is continuous and terminates at a public way or at an exterior exit discharge. (For full text, refer to NFPA 101-2012: 20/21.2.1; 38/39.2.7; 7.2.6; 7.7)
3. Doors in a means of egress are always unlocked in the direction of egress and swing in the direction of egress when there are 50 or more occupants. (For full text, refer to NFPA 101-2012: 20/21.2.2, 7.2.1.4.2)

4. Exit corridors or passageways serving as a means of egress are 44 (or more) inches wide. Doors opening in the means of egress from diagnostic or treatment areas are 32 (or more) inches wide. (For full text, refer to NFPA 101-2012: 20/21.2.3.2; 2.3.4)

5. Exits, exit accesses, and exit discharges are clear of obstructions or impediments to the public way, such as clutter (for example, equipment, carts, furniture), construction material, and snow and ice. (For full text, refer to NFPA 101-2012: 7.1.10.1)

6. Exit access doors and exit doors are free of mirrors, hangings, or draperies that might conceal, obscure, or confuse the direction of exit. (For full text, refer to NFPA 101-2012: 20/21.2.1; 7.5.2.2.1)

7. Floors or compartments of a building have two or more approved exits that are located remotely from each other. (For full text, refer to NFPA 101-2012: 20/21.2.4.1; 2.4.2; 7.4; 38/39.2.4)

8. In new buildings protected throughout by an approved automatic sprinkler system, dead-end corridors are no longer than 50 feet. In new buildings not provided with automatic sprinklers throughout, dead-end corridors are no longer than 20 feet. In existing buildings, dead-end corridors are no longer than 50 feet. (For full text, refer to NFPA 101-2012: 20/21.2.5; 38/39.2.5.2)

9. The travel distance from any point in a room to an exit is 150 feet or less; the travel distance is 200 feet or less in buildings protected throughout by an approved automatic sprinkler system. (For full text, refer to NFPA 101-2012: 20/21.2.6)

10. Nothing is stored in any exit enclosure. (For full text, refer to NFPA 101-2012: 20/21.2.1; 7.2.2.5)

11. Means of egress are adequately illuminated at all points, including angles and intersections of corridors and passageways, stairways, stairway landings, exit doors, and exit discharges. (For full text, refer to NFPA 101-2012: 20/21.2.8; 7.8)

12. Illumination in the means of egress, including exit discharge, is arranged so that failure of any single lighting unit will not result in darkness (less than 0.2 foot-candles of illumination). (For full text, refer to NFPA 101-2012: 20/21.2.8; 7.8.1.4)

13. Signs reading "NO EXIT" are posted on doors to stairs in areas that are not conforming exits and that may be mistaken for exits. (For full text, refer to NFPA 101-2012: 20/21.2.10; 7.10.8.3)

14. Exit signs are visible when the path to the exit is not readily apparent. Signs are adequately lit and have letters that are 4 or more inches high or 6 inches high if externally lit. (See NFPA 101-2012: 20/21.2.10; 7.10.5)

LS.03.01.30
The organization provides and maintains building features to protect individuals from the hazards of fire and smoke.

Note 1: This standard applies to sites of care where four or more patients at the same time are provided either anesthesia or outpatient services that render patients incapable of saving themselves in an emergency in the organization.

Note 2: This standard applies to all ambulatory surgical centers seeking accreditation for Medicare certification purposes, regardless of the number of patients rendered incapable.

Note 3: In leased facilities, the elements of performance of this standard apply only to the space in which the accredited organization is located; all exits from the space to the outside at grade level; and any Life Safety Code building systems that support the space (for example, fire alarm system, automatic sprinkler system).

Elements of Performance for LS.03.01.30

1. In new construction, vertical openings, including exit stairs, are enclosed by one-hour fire-rated walls when connecting three or fewer floors and two-hour fire-rated walls when connecting four or more floors. Existing vertical openings, including exit stairs, are enclosed with a minimum of one-hour fire-rated construction. (For full text, refer to NFPA 101-2012: 20/21.3; 8.6; 8.6.5)

 Note: These vertical openings include, but are not limited to, shafts (including elevator, light, and ventilation), communicating stairs, ramps, trash chutes, linen chutes, and utility chases.

2. In buildings, exit stairs connecting three or fewer floors are fire rated for one hour; exit stairs connecting four or more floors are fire rated for two hours. (For full text, refer to NFPA 101-2012: 20/21.3.1; 38/39.3.1; 8.6.5)

3. All hazardous areas are enclosed with one-hour fire-rated walls with ¾-hour fire-rated doors; or hazardous areas have sprinkler systems and are constructed to resist the passage of smoke with doors equipped with self-closing or automatic-closing devices. (For full text, refer to NFPA 101-2012: 20/21.3.2; 38/39.3.2; 8.7; NFPA 80-2010: 4.8.4.1; 6.3.1.7; 6.5)

4. Installation and use of alcohol-based hand rub (ABHR) dispensers that are 95% or less alcohol content by volume are allowed in each smoke compartment as per NFPA 101-2012: 18/19.3.2.6.

 Note 1: See The Joint Commission's website (http://www.jointcommission.org/life_safety_code_information__resources/) for alcohol-based hand rub (ABHR) requirements.

 Note 2: This element of performance reflects NFPA 101-2012: 18/19.3.2.6. For alternative guidelines on ABHR dispensers, see NFPA 101-2012: 8.7.3.1.

5. Wall and ceiling interior finishes of exits and enclosed corridors are rated Class A or B for limiting smoke development and the spread of flames. (For full text, refer to NFPA 101-2012: 20/21.3.3; 38/39.3.3.2; 10.2.3)

6. Newly installed interior floor finishes in exits and enclosed corridors have a Class I or II radiant flux rating. (For full text, refer to NFPA 101-2012: 20/21.3.3; 10.2.7)
7. In new construction, openings in vision panels or doors are permitted without protection provided the openings are installed at or below one half the distance from the floor to the room ceiling and do not exceed 20 square inches. In rooms protected throughout by an approved automatic sprinkler system, the aggregate area of openings is limited to 80 square inches. In existing construction, openings are not limited. (For full text, refer to NFPA 101-2012: 20.3.6.2)

 Note: Openings may include, but are not limited to, mail slots and pass-through windows in areas such as laboratory, pharmacy, and cashier stations.

8. In new construction, corridors that provide access to exits are separated from other areas by one-hour fire-rated barriers unless otherwise permitted by NFPA 101-2012: 38.3.6.1.

 Note: For existing construction, there are no requirements. (For full text, refer to NFPA 101-2012: 20.3.6.2)

9. Ambulatory health care space must be separated from other tenants with a one-hour fire-resistance-rated barrier, constructed from the floor slab below to the floor or roof above. Doors in the barrier are 1¾ inch thick, solid bonded (or equivalent), self-closing, and have positive latching. Doors are kept in the closed position except when in use. Windows in the barrier comply with NFPA 101-2012: 8.3. (For full text, refer to NFPA 101-2012: 20/21.3.7.1; 8.3)

10. Smoke barriers divide patient treatment floors into two or more smoke compartments. (For full text, refer to NFPA 101-2012: 20/21.3.7.2)

11. The size of new smoke compartments meets the requirements of NFPA 101-2012: 20.3.7.5. (For full text, refer to NFPA 101-2012: 20.3.7.2)

12. Smoke barriers extend from the floor slab to the upper floor or roof slab above, through any concealed spaces (such as those above suspended ceilings and interstitial spaces), continuously from exterior wall to exterior wall. All penetrations are sealed. New smoke barriers are constructed of one-hour fire-rated materials. (For full text, refer to NFPA 101-2012: 20/21.3.7.5; 20/21.3.7.6)

13. Ducts that penetrate smoke barriers, are protected by approved smoke dampers that close when a local smoke detector is activated. The detector is located either within the duct system or in the corridor.

 Note: In buildings with a fully ducted HVAC system and protected throughout by an approved automatic sprinkler system, dampers are not required. (For full text, refer to NFPA 101-2012: 20/21.3.7.6; 8.5.5)

14. Fixed fire window assemblies in smoke barrier walls or doors are fire rated for 20 minutes and are 25% or less of the size of the fire barrier in which they are installed.

 Note: Existing window installations that have wired glass or fire-rated glazing, are 1,296 square inches in size or smaller, and are set in approved metal frames are acceptable. (For full text, refer to NFPA 101-2012: 20/21.3.7.7, 8.3.3)

15. Doors in smoke barriers are constructed of 1 3/4 inch or thicker solid bonded wood core (or equivalent) and are self-closing or automatic-closing. (For full text, refer to NFPA 101-2012: 20/21.3.7.9; 20/21.2.2.4)
16. The organization meets all other Life Safety Code fire and smoke protection requirements related to NFPA 101-2012: 20/21.3. Note: See The Joint Commission’s website (http://www.jointcommission.org/life_safety_code_information__resources/) for alcohol-based hand rub (ABHR) requirements, including permissible volumes of ABHR gel and foam within a single smoke compartment.

LS.03.01.34

The organization provides and maintains fire alarm systems.

Note 1: This standard applies to sites of care where four or more patients at the same time are provided either anesthesia or outpatient services that render patients incapable of saving themselves in an emergency in the organization.

Note 2: This standard applies to all ambulatory surgical centers seeking accreditation for Medicare certification purposes, regardless of the number of patients rendered incapable.

Note 3: In leased facilities, the elements of performance of this standard apply only to the space in which the accredited organization is located; all exits from the space to the outside at grade level; and any Life Safety Code building systems that support the space (for example, fire alarm system, automatic sprinkler system).

Elements of Performance for LS.03.01.34

1. The fire alarm signal automatically transmits to one of the following:
 - An auxiliary fire alarm system
 - Central station fire alarm system
 - A proprietary supervising station fire alarm system
 - A remote supervising station fire alarm system
 (For full text, refer to NFPA 101-2012: 20/21.3.4.3.2; NFPA 101-2012: 9.6.4)

2. The master fire alarm control panel is located in an area with a smoke detector or is in an area that is a continuously occupied and protected environment, which is an area enclosed with one-hour fire-rated walls and 3/4-hour fire-rated doors. (For full text, refer to NFPA 101-2012: 20/21.3.4.1; 9.6.4; 9.6.6; 9.6.1.8)

3. The remote ancillary annunciator panel is in a location approved by the local fire department or its equivalent. (For full text, refer to NFPA 101-2012: 20/21.3.4.3, 9.6.3; 9.6.3.5)

4. The fire alarm system contains an audible and visual evacuation signal throughout the building and provides occupant notification without delay. (For full text, refer to NFPA 101-2012: 20/21.3.4.3, 9.6.3; 9.6.3.5)

5. The fire alarm system is initiated by the approved automatic sprinkler system, or the fire detection system, or by manual pull stations. (For full text, refer to NFPA 101-2012: 20/21.3.4.3; 9.6.2)

LS.03.01.35
The organization provides and maintains equipment for extinguishing fires.
Note 1: This standard applies to sites of care where four or more patients at the same time are provided either anesthesia or outpatient services that render patients incapable of saving themselves in an emergency in the organization.
Note 2: This standard applies to all ambulatory surgical centers seeking accreditation for Medicare certification purposes, regardless of the number of patients rendered incapable.
Note 3: In leased facilities, the elements of performance of this standard apply only to the space in which the accredited organization is located; all exits from the space to the outside at grade level; and any Life Safety Code building systems that support the space (for example, fire alarm system, automatic sprinkler system).

Elements of Performance for LS.03.01.35

1. For new construction, the fire alarm system monitors the components of any required approved automatic sprinkler system. (For full text, refer to NFPA 101-2012: 20/21.3.5.2; 9.7.1.1)

2. The fire alarm system is connected to water flow alarms of any required automatic sprinkler system. (For full text, refer to NFPA 101-2012: 20/21.3.4.4; 20/21.3.5; 9.7.1.1)

3. Piping supports for approved automatic sprinkler systems are not damaged or loose. (For full text, refer to NFPA 101-2012: 20/21.3.4.4; NFPA 25-2011: 5.2.1; 5.2.2; 5.2.3)

4. Approved automatic sprinkler systems piping is not used to support any other item. (For full text, refer to NFPA 101-2012: 20/21.3.4.4; NFPA 25-2011: 5.2.2; NFPA 13-2010: 8.5.5.2; 8.5.5.3)

5. Sprinkler heads are not damaged and are free from corrosion, foreign materials, and paint. (For full text, refer to NFPA 101-2012: 20/21.3.4.4; NFPA 25-2011: 5.2.1; 5.2.2; NFPA 13-2010: 6.2.6.2; 6.2.7.1)

6. There is 18 inches or more of open space maintained below a sprinkler deflector to the top of storage. Note: Perimeter wall shelving may extend up to the ceiling when not located directly below a sprinkler head. (For full text, refer to NFPA 101-2012: 20/21.3.4.4; NFPA 25-2011: 5.2.1; 5.2.2; NFPA 13-2010: 8.5.5; 8.5.6)

7. The travel distance from any point to the nearest portable fire extinguisher is 75 feet or less. Portable fire extinguishers have appropriate signage, are installed in a cabinet or secured on a hanger made for the extinguisher, and are at least four inches off the floor. Those fire extinguishers that are 40 pounds or less are installed so the top is not more than 5 feet above the floor. (For full text, refer to NFPA 101-2012: 20/21.3.5.3; 9.7.4.1; NFPA 10-2010: 6.1.3; 6.2.1)

LS.03.01.40

The organization provides and maintains special features to protect individuals from the hazards of fire and smoke.

Note 1: This standard applies to sites of care where four or more patients at the same time are provided either anesthesia or outpatient services that render patients incapable of saving themselves in an emergency in the organization.

Note 2: This standard applies to all ambulatory surgical centers seeking accreditation for Medicare certification purposes, regardless of the number of patients rendered incapable.

Note 3: In leased facilities, the elements of performance of this standard apply only to the space in which the accredited organization is located; all exits from the space to the outside at grade level; and any Life Safety Code building systems that support the space (for example, fire alarm system, automatic sprinkler system).

Elements of Performance for LS.03.01.40

1. Windowless buildings or portions of windowless buildings meet the requirements of NFPA 101-2012: 20/21.4; 11.7.

2. High-rise buildings have approved automatic sprinkler systems that meet the requirements of NFPA 101-2012: 20/21.4; 11.8.

LS.03.01.50

The organization provides and maintains building services to protect individuals from the hazards of fire and smoke.

Note 1: This standard applies to sites of care where four or more patients at the same time are provided either anesthesia or outpatient services that render patients incapable of saving themselves in an emergency in the organization.

Note 2: This standard applies to all ambulatory surgical centers seeking accreditation for Medicare certification purposes, regardless of the number of patients rendered incapable.

Note 3: In leased facilities, the elements of performance of this standard apply only to the space in which the accredited organization is located; all exits from the space to the outside at grade level; and any Life Safety Code building systems that support the space (for example, fire alarm system, automatic sprinkler system).

Elements of Performance for LS.03.01.50

1. New elevators are equipped with all of the following:
 - Firefighters service key recall and smoke detector automatic recall
 - Firefighters service emergency in-car key operation
 - Machine room smoke detectors
 - Elevator lobby smoke detectors

 Existing elevators meet these requirements when they have a travel distance of 25 feet or more above or below the level that best serves the needs of firefighters. (For full text, refer to NFPA 101-2012: 20/21.5.3; 9.4)

2. The organization does not allow unvented fuel-fired heaters. (For full text, refer to NFPA 101-2012: 20/21.5.2.2)

3. All heating appliances are provided with safety features to stop the flow of fuel and turn off the appliance during times of excessive temperatures or ignition failure. (For full text, refer to NFPA 101-2012: 20/21.5.2.2)

LS.03.01.70
The organization provides and maintains operating features that conform to fire and smoke prevention requirements.

Note 1: This standard applies to sites of care where four or more patients at the same time are provided either anesthesia or outpatient services that render patients incapable of saving themselves in an emergency in the organization.

Note 2: This standard applies to all ambulatory surgical centers departments seeking accreditation for Medicare certification purposes, regardless of the number of patients rendered incapable.

Note 3: In leased facilities, the elements of performance of this standard apply only to the space in which the accredited organization is located; all exits from the space to the outside at grade level; and any Life Safety Code building systems that support the space (for example, fire alarm system, automatic sprinkler system).

Elements of Performance for LS.03.01.70

1. In areas where smoking is permitted, ashtrays are safely designed and made of noncombustible material. Metal containers with self-closing cover devices in which ashtrays can be emptied are readily available to all areas where smoking is permitted. (For full text, refer to NFPA 101-2012: 18/19.7.4)

2. Smoking is prohibited in any room, ward, or compartment where flammable liquids, combustible gases, or oxygen is used or stored; these areas have signs that read “NO SMOKING” or display the international symbol for no smoking. In facilities where smoking is prohibited and signs are prominently placed at all major entrances, secondary signs that prohibit smoking in hazardous areas are not required. (For full text, refer to NFPA 101-2012: 18/19.7.4)
 Note: The secondary sign exception is not applicable to medical gas storage areas.

3. The organization prohibits all combustible decorations unless they meet the criteria of NFPA 101-2012: 20/21.7.5.4.

4. Soiled linen and trash receptacles larger than 32 gallons (including recycling containers) are located in a room protected as a hazardous area. (For full text, refer to NFPA 101-2012: 20/21.7.5.5)

5. Portable space heaters are prohibited in smoke compartments containing staff sleeping rooms and patient treatment areas. Non-sleeping rooms occupied by staff and employee areas separated from the corridor are permitted to have portable space heaters that contain heating elements not exceeding 212°F. (For full text, refer to NFPA 101-2012: 20/21.7.8)

6. The organization meets all other Life Safety Code operating feature requirements related to NFPA 101-2012: 20/21.7. (See also EC.02.03.03, EP 1)